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Abstract 
Antibiotic resistance is a public health concern that jeopardizes the efficacy of the therapies with these 
drugs and raises the possibility of epidemic events involving the emergence and re-emergence of 
infectious diseases whose treatments can be delicate or ineffective. As a result, this public health issue 
necessitates the search for feasible alternatives, such as phage therapy, which employs bacterial viruses 
to treat bacterial infections. In this way, the goal of this research is to look at the qualities of phage 
therapy as well as potential clinical applications and challenges. 
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Introduction 
Infectious infections were pronounced death sentences until the discovery of penicillin, a 
chemical isolated for the first time from the fungus Penicillium notatum and efficient against 
a variety of bacterial pathogens. It's worth noting that the discovery of penicillin also marks 
the start of the antibiotics golden age, during which several scientists from around the world 
collaborated to discover most of the drugs currently used in clinical practice, resulting in a 
slew of medical breakthroughs that improved the quality of life and longevity of the world's 
population [1]. 
However, the inappropriate use of antibiotics has increased the incidence of difficult-to-treat 
infections [2], as well as the epidemiologic risks of transmission and maintenance of resistant 
pathogens within human populations, jeopardizing all of medicine's advances, quality of life, 
and longevity achieved since the discovery of antibiotics [3, 4]. 
In this context, phage therapy is a procedure that uses bacterial viruses to treat bacterial 
infections (figure 1), representing a natural strategy to combat bacterial resistance with several 
advantages over chemical antibiotics, including specificity against specific bacterial strains, 
the ability to self-replicate, presence in abundance at the infection site as long as bacteria are 
available for replication, and the ability to follow bacterial evolution [5]. 
Highlighting Frederick Twort explored the biological activity of phages for the first time in 
1915, and Felix d'Hérelle established the efficiency of these viruses by effectively treating 
numerous infants hospitalized with dysentery in 1919. Phage therapy, which had been dormant 
for almost a century due to the discovery of antibiotics, was resurrected in the last few years 
due to an alarming surge in bacterial strains resistant to multiple antibiotics [6, 7]. In this sense, 
the purpose of this study is to look at the pharmacological features of phage therapy as well as 
prospective therapeutic uses as an alternative to antibiotics. 
 

Phage therapy's history and current use around the world 
After the success in treating bacterial dysentery in France in 1919, the microbiologist Felix 
d'Hérelle had a significant influence on European countries such as Russia, Poland, and the 
former Soviet Union. He also influenced the conduct of phage therapy research in the United 
States, where promising results were achieved for treating various types of bacterial infections 
[8, 9]. 
However, after WWII, and with the discovery of antibiotics, the use of bacteriophages in 
therapeutics faded into obscurity for a long period. This was aggravated by linguistic variations 
in the languages of countries like Russia and its neighbors, who continued to explore phage 
therapy but with limited international dissemination. In addition, the focus on these viruses 
switched to their use as a model organism in molecular biology, leading to key advancements 
including restriction enzymes, gene cloning, the CRISPR-Cas gene editing system, and phage 
display technology [10-12].
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Then, many years later, due to the worldwide exponential 

development in antibiotic-resistant and multidrug-resistant 

bacterial strains, interest in phage therapy was reignited, 

though it is currently limited as a health service to a few 

European nations with varying regulatory statuses [13]. 

The Eliava Institute in Georgia provides phage therapy as a 

standard healthcare practice; in Belgium, the marketing of 

phages in generic pharmaceutical formulations is legal; and 

in other countries, a few institutions, such as the Center for 

Innovative Phage Application and Therapeutics in the United 

States and the Ludwik Hirszfeld Institute of Immunology and 

Experimental Therapy in Poland, conduct phage therapy 

under an experimental regime [13, 14]. 

 

The Bacteriophages' Pharmacological Properties 

In general, pharmacological therapy with any drug should 

consider pharmacokinetic aspects such as 1) absorption, 

which is dependent on permeability to biological barriers, 

physical-chemical properties such as molecular size, 

lipophilicity, and degree of ionization, 2) Distribution profile 

based on the degree of blood perfusion, the affinity for body 

tissues, as well as the affinity for plasma proteins 3) 

metabolism involving many enzymatic processes, such as 

those catalyzed by the CYP450 enzymatic complex, which 

tends to make xenobiotics more polar, allowing them to be 4) 

excreted mostly through the kidney [15-17]. 

Highlighting the antimicrobial must reach an appropriate 

concentration at the site of action and engage with a 

molecular target to provide the desired pharmacodynamic 

effect while taking into account the likelihood of drug 

interactions and adverse events [2,18]. 

In this perspective, considering the aforementioned 

processes, phage therapy has a different pharmacological 

profile than chemical medications. 

Bacteriophage absorption and distribution are negligible 

since these viruses have a high degree of penetration over 

biological barriers due to their nanoscale size, allowing them 

to reach anatomical areas such as the central nervous system 

and difficult-to-reach organs like bones [11]. Furthermore, 

because bacteriophages are not xenobiotics, metabolism does 

not affect them, therefore their clearance is determined by 

bacterial density to enable viral multiplication, immune 

system activity, and excretion in urine (which can be 

beneficial in situations of urinary tract infection) and feces [19-

21]. 

In this context, phage therapy is classified as an active 

strategy in terms of dosing schedules since it can be given in 

a single dose and does not require dosing plans to keep serum 

concentrations within a range where the pharmacological 

effect can be observed due to the ability for viral reproduction 
[19]. However, the immune system and physical-chemical 

properties found in specific anatomical areas (such as the 

acidic pH in the stomach) can rapidly lower phage quantities 

in the body after a single dose, which may be comfortable for 

the patient but may limit therapeutic efficacy [22-24]. 

However, pharmaceutical formulations that protect phages 

can overcome this constraint, allowing larger viral densities 

to reach the bacterial pathogen [25]. This point will be 

addressed later. 

Furthermore, phage therapy's pharmacodynamics are linked 

to a series of events that alter the expression of bacterial 

structural and functional genes, resulting in the death of the 

target bacteria, where genomic and proteomic differences 

play a role in the phage-bacterial cell interaction [26]. In this 

context, it's well known that phages that infect gram-negative 

bacteria engage with protein or bacterial appendices such as 

the capsule, flagella, and pile, whereas phages that infect 

gram-positive bacteria contact with saccharides, or teichoic 

acid moieties [27, 28]. This selectivity (figure 2) is a promising 

benefit since it eliminates the likelihood of interactions of the 

phages with the normal microbiota, thus reducing the risks of 

dysbiosis [5]. 

Selectivity, on the other hand, can be a disadvantage due to 

the high genetic diversity found in bacteria, which can result 

in differentiated expression of molecules used by phages in 

host recognition, causing variability in phage lytic activity 

across strains of bacteria from the same genus or species [29]. 

In this sense, the ideal bacteriophage for phage therapy is a 

highly virulent lytic virus capable of infecting a wide range 

of bacteria species, producing a large progeny after infecting 

a single cell and maintaining high viral densities at infection 

sites. Besides this, the ideal phage should be completely 

devoid of genes encoding for antibiotic resistance, toxin, and 

virulence factors, and be able to withstand the technical 

processes of formulation production [30–32]. 

Additionally, pharmaceuticals containing phages as 

therapeutic actives should have a high degree of purity and 

specified quality criteria. To avoid the development of 

resistance in the target bacteria against the phages, and to 

ensure the successful treatment of infections when the 

identification of the bacterial pathogen is not available, phage 

cocktails containing several different viruses are preferable 

rather than monotherapy with just one type of phage [8, 33]. 

 

Bacteriophages as an alternative to antibiotics 

Antibiotics became more widely used after their discovery, 

and bacterial resistance to antibiotics became a public health 

issue, which has been documented since the 1950s [34]. This 

has encouraged the creation of various research lines aimed 

at extending the useful life of existing antibiotics as well as 

developing novel medications and drug delivery methods. In 

this context, bacteriophages have reemerged as a therapeutic 

resource [35, 36], but in a different way from the 1910's due to 

significant scientific and technological advances in the fields 

of bacteriology, virology, molecular biology, and medical-

pharmaceutical sciences [12, 37, 38], which have enabled a wider 

understanding of bacteriophage’s biology and their 

biotechnological applications in health. 

As a result, given the current state of knowledge about the 

pharmacological aspects of phage therapy, several 

possibilities emerge, particularly in cases where antibiotics 

have a short safety interval, such as among patients who use 

any medication in a continuous regimen [20], as those 

receiving psychiatric treatment with antidepressants; patients 

with diabetes type 2 receiving antidiabetic drugs; and 

polypharmacy patients, such as those with heart disease who 

may need to take multiple medications, and are prone to 

experience drug interactions or pharmacological treatment 

deregulation, which can lead to increased morbidity due to 

the underlying disease when antibiotics are required [39-42]. 

Besides, the literature highlights a significant number of drug 

interactions with antibiotics, such as the use of amoxicillin 

with venlafaxine that can cause serotonergic syndrome, 

furosemide with gentamicin can increase the diuretic's 

ototoxicity, and penicillin with warfarin can increase the risk 

of hemorrhage, as well as antibiotic interactions with food [43-

46]. 

In this context, phage therapy is a safe alternative to 
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antibiotics for patients with chronic diseases who are 

receiving pharmacological treatment with two or more drugs, 

because the pharmacology of phages differs from that of 

chemical drugs, as previously discussed, and does not 

interfere with the pharmacokinetics or pharmacodynamics of 

chemical drugs [20, 47, 48]. Noting that antibiotic allergy is 

another important concern in the treatment of bacterial 

infections that can be overcome with phage therapy [9, 49], and 

these viruses may also represent a potential therapeutic 

resource for allergic disorders, as they have modulatory 

properties on interleukin secretion 10, which suppresses 

inflammatory response pathways involving eosinophils and 

mast cells [50]. 

Furthermore, we propose that phage therapy be used as a 

treatment and prophylaxis for chronic diseases in which 

bacterial agents play a role as an infectious determinant, such 

as Helicobacter pylori in the development of intestinal 

gastritis and peptic ulcers, Campylobacter pylori in cases of 

Guillain-Barré syndrome, and Borrelia burgdorferi in cases 

of Lyme arthritis [51]. 

And, as Kingwell [30] points out, the technological potential 

of bacteriophages represents an open field of applications, 

with a wide range of possibilities reported in the literature, 

including ways to prevent contamination of hospital 

environments, soft tissue dressings to prevent infections [52], 

decontamination of patients and health professionals [53], 

biofilm elimination [54], and foodborne disease prevention [55]. 

Noting that bacteriophages also are an important topic in 

bacterial control for industrial interests, particularly in the 

food and livestock industries [56–58], where antibiotics are used 

in large quantities and contribute to the emergence and spread 

of bacterial resistance around the world, affecting human 

health outside of the hospital environments [59]. 

 

Phage therapy safety and efficacy 

Phage therapy is safe from an ecological standpoint, because 

the human beings have been exposed to a vast number and 

diversity of phages in nature since the beginning of human 

species [60]. Even molecular evidence shows that the human 

virome has a great number and diversity of phages, which 

plays a vital role in maintaining homeostasis and participates 

in processes that promote disease in cases where the 

microbiota function is disrupted [61-64]. 

The clinical use of bacteriophages, on the other hand, 

necessitates the delivery of a virus or set of viruses at high 

titers at the site of infection, usually through routes that these 

organisms do not ordinarily have access to in the human body 
[24, 53, 65]. As a result, clinical trials are required to ensure the 

safety and efficacy of phages for treating bacterial illnesses, 

in order to provide evidence to help doctors choose and 

employ phage therapy appropriately [14, 30]. 

In this session, studies with low strength of evidence, such as 

case reports present positive outcomes reported in the 

literature, implying that phage therapy is effective; however, 

the variables determining the success of the phage therapy 

intervention are not fully understood and are insufficient to 

ensure generalizations to standardize the outcomes. 

Khawaldeh, et al. [66], for example, report on the efficacy of 

bacteriophages in the topical treatment of refractory urinary 

tract infection caused by Pseudomonas aeruginosa in 

combination with antibiotics. Jennes, et al. [67] also report 

efficacy in a complicated case involving a 61-year-old male 

who contracted septicemia from the same pathogen, had 

several clinical complications, and was treated with a phage-

specific against Pseudomonas aeruginosa administered 

intravenously, resulting in a successful recovery from sepsis 

but unfortunately, the patient died of a Klebsiella 

pneumoniae-related bacterial infection. 

Furthermore, the results of investigations with high strength 

of evidence, such as group control studies and double-blind 

randomized clinical trials, are inconclusive. 

In this context, Bruttin et al. [68] compared a group of 

volunteers who received T4 phages in titers of 105 PFU x mL-

1 by oral route with a placebo group, reporting no adverse 

effects or differences between the groups; and in a double-

blind clinical trial phase I, Rhoads et al. [69] showed safety but 

equivocal efficacy in 42 patients who were treated with 

phages for leg ulcers by topical route. 

Similarly, Sarker et al. [70] compared the outcomes of a test 

group that received oral doses of a Russian coliphage with a 

placebo group in a randomized study, finding no adverse 

reactions or efficacy, but differing from Wright et al. [71], who 

reported the effectiveness in the treatment of 24 patients with 

chronic otitis caused by Pseudomonas aeruginosa multi-

resistant to antibiotics. Furthermore, McCallin et al. [13] report 

in a review the clinical outcomes of 29 studies of patients who 

received phage therapy to treat various bacterial infections, 

finding that 22 patients had success, while 7 had partial 

improvement but no complete resolution of the infection, 

similar to Jault et al. [72], who report a reduction in bacterial 

load of wounds in burned patients but without infection cure. 

Adding to the conclusion that clinical investigations on the 

efficacy of phage therapy show conflicting results, implying 

that further studies are needed to provide a predictable 

therapeutic response [13]. 

 

Challenges to overcome in phage therapy 

The high specificity of bacteriophages for their bacterial 

hosts, as well as the vulnerability of many of these viruses to 

environmental conditions inherent in formulation preparation 

and administration routes (figure 3), are the primary limiting 

constraints in bacteriophage pharmaceutical application, 

besides, detecting genes that express antibiotic resistance and 

virulence factors are also challenges that must be considered 

in the methodological design of research to obtain candidates 

for phage therapy [27, 33, 54]. 

In this review we will focus on the challenges concerned to 

host specificity and resistance to environmental factors. 

In this context, bacteriophages' specificity for bacterial hosts 

is mediated by molecular recognition structures involved in 

pathogen-host interaction [73], posing a challenge for clinical 

practice when the etiological agent and its molecular 

characteristics are unknown, necessitating an assessment of 

the range of hosts and determinants for host-pathogen 

interaction [60]. This can be time-consuming; however, using 

formulations containing multiple phages increases the 

likelihood of success, as well in preventing bacterial 

resistance to phages through mechanisms such as adsorption 

inhibition, restriction/modification system, abortive 

infection, reduced infection vigor, and interference with viral 

dissemination [74]. 

Thus, the ability of phages to infect and lyse different 

bacterial hosts can be evaluated by two methods: 1) the host 

range, in which the ability of phages to infect and lyse 

different bacterial hosts is compared by their titers, where 

high values are desired; and 2) the efficiency of plating, 

which is a comparison of bacterial titers taking into account 

the reason present in the titers of hosts different from the one 
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the phage was obtained (E.O.P. = test host/obtaining host) [31, 

75]. 

These procedures must be pursued in tandem in order to 

obtain more information about the phages' profile of 

infectivity to various bacterial hosts [75, 76]. Furthermore, it is 

strongly recommended that the hosts utilized in the 

experiments be clinical isolates, as this will give the data 

more confidence concerning human phage therapy [77]. 

In this regard, Chang et al. [78] demonstrate experimentally 

the importance of knowing the profile of susceptibility and 

resistance of target bacteria to phages in their study, in which 

they isolated the Phage PVE20 from sewage samples, 

preserved it in phosphate buffer at a titer of 1010 PFU/mL, 

and tested it against seven strains of antibiotic-resistant 

Pseudomonas aeruginosa, finding that five of the seven were 

susceptible, one was completely resistant, and another was 

partially resistant. 

Moreover, the resistance of bacteriophages to environmental 

factors and characteristics of the routes of administration, 

such as temperature, pH, ionic strength, divalent ion 

concentration, and immune system activity, can influence the 

densities of phages that reach the infection site, 

compromising the efficacy of phage therapy [79, 80]. 

To protect phages from the aforementioned factors, the 

resistance and susceptibility of viruses intended for phage 

therapy should be experimentally evaluated, contributing to a 

broader characterization, as well as the design of storage 

conditions and the preparation of specific pharmaceutical 

formulations for phage therapy, which can improve phage 

pharmacokinetics by increasing their bioavailability at the 

infection site [27, 54, 81, 82]. In this context, several methods for 

developing pharmaceutical formulations for phage therapy 

are described in the literature, such as spray freeze drying [83], 

encapsulation, incorporation of phages in matrix systems 

containing biopolymers such as proteins, saccharides, lipids 
[84, 85], or semi-solid colloidal systems and solid formulations 
[86], in addition to formulations aimed at treating infections in 

specific organic systems [24, 87, 88]. 

In this context, Chang et al. [89] used lactose and leucine as 

excipients to protect the PEV20 phage and then prepared 

powders using the spray drying method, resulting in inhalable 

phage powders that were biologically and physically stable 

over long-term storage (12 months) at room temperature. 

They also demonstrated that the phage powders were non-

toxic to lung alveolar macrophage and epithelia, moreover, 

the formulation was tested in rodent model for treating 

Pseudomonas aeruginosa respiratory infection, confirming 

the viability of phage PEV20 dry-powder formulation for 

treating antibiotic-resistant P. aeruginosa lung infection. 

Highlighting the study presented statistical significance when 

compared to the controls [90]. 

 

Figures 

 

 
 

Fig 1: Phage therapy concept 
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Fig 2: The selectivity of bacteriophages for hosts depends on biochemical moieties in the bacterial surface 

 

 
 

Fig 3: Resistance to environmental conditions, as well as pharmaceutical formulation development and application route 
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Fig 4: Pharmaceutical formulations may increase the availability of phages in the infection site and improve the outcome of the patient. 

Phage cocktails are more suitable than monotherapy to treat infections without laboratorial diagnose of the bacterial pathogen 

 

Conclusion 

Because bacteriophages are obligate cellular parasites of 

bacterial cells, therefore they represent a natural way to 

control specific bacteria populations. However, because these 

viruses are biologically diverse, formulations must be 

tailored to the unique characteristics of each phage isolated, 

and their effects on the target bacterial species.  

In this perspective, this review suggests that phage therapy's 

variable results could be due to 1) phage non-survival in 

delivery systems, as well as the natural process of clearance 

in the human body; or 2) a failure to consider elements 

intrinsic to the host range of the phages studied in the 

reviewed studies.  

As a result, we propose at the conclusion of this paper that, in 

addition to extensive characterization, bacteriophages should 

be evaluated against collections of clinical bacterial isolates 

as well as different environmental conditions in order to 

generate subsidies regarding the physicochemical conditions 

required to keep phages viable in formulations that enable 

satisfactory bioavailability to human infection sites. 
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